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ii ; \z Abstract

ol “heis well-known that the complexity of performing operations on a set depends heavily on the structure which
f, we are allowed to put into its representation. F:; «xample. searching through a sequence of numbers can be

_ performed more cfficiently if the numbers appear in sorted order. In this paper, we take, as a case-study, the
class of problems involving a simple N-gon P and, making the assumption that in addition to the usual
description of the boundary of P, an arbitrary triangulation is also available, we investigate the computational
power gained from having this additional information. Among other results, we give a very simple, optimal
algorithm for computing the area visible from an arbitrary point in P. We also present several optimal
algorithms for computing the internal distance between two poiots in P. Recall that the internal distance
between A and B is defined as the length of the shortest path inside P between 4 and B.
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1. Introduction

The complexity of problems that operate on fixed objects is highly dependent on the amount of
preprocessing allowed in the objects’ representation. As illustrated in the well known paradigm
searching .vs. sorting, the mere availability of an order among keys cuts down the complexity of searching
from linear to logarithmic. In aumerical analysis, preconditioning a sparse matrix is standard procedure in
order to facilitate the computation of its inverse. In general, the crucial issue is to balance costs and gains of
preprocessing so as to optimize the overall performance. Few areas of computer science are free of this type of
trade-offs and, in particular, this concern is recurrent in computational geometry, operations rescarch, and in
the study of data structures or data bases.
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The first area mentioned, computational geometry, provides a good example of a structure, i.e., the Voronoi
diagram, easy 0 construct efficiendy. while one of the most powerful tools at our disposal for solving closest-
point problems [SH77) Unrelated, yet equally effective results have shown that convex figures lead
themselves t0 speedier algorithms than arbitrarily-shaped objects [CH80,CD80,DK81]. Consequendy, an
atractive approach to handle noa-convex figures is to decompose them into their convex parts, then apply ©

. these the efficient methods known for convex objects [CH80,FS81,GJ78,SC78.SV80,TO80]. We pursue this
endeavor in this paper. and investigate the cxistence of efficient algorithms for various probicms, assuming
that in addition to the usual boundary description of a polygon, an arbitrary triangulation is also available. It
is standard to define a triangulation of a polygon as a convex decomposition which does not introduce new
vertices' [GJ78]. For our purposes, however, we can relax this definition and allow the vertices of the
triangulation to lic anywherc on the boundary of the polygon. The only provision to make is that the total
number of points used in the triangulation is linear in the number of vertices of the polygon. Note that this is
always true with the standard, more restrictive definition. We also observe that it is easy, given a convex
decomposition of a polygon, to derive a triangulation in lincar time. It is then apparent that it is only for
simplicity that we choose 0 be supplied with a triangulation rather than a more general convex
decomposition of the polygon.
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With this additional information in hand, we are able to describe a very simple, yet optimal algorithm for
computing the arca visiblc from any point insidc 2 polygon. We also present several optimal algorithms for
computing the internal distance between two points inside a polygon. Recall that the internal distance is
defined as the shortest distance a person might travel from one point to the other, whilc remaining within the
boundary of the polygon.
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Next we introduce our notation. before procoeding with the description of the algorithns. Let # be a
simple’ polygon with vertices v,....v, in clockwise order. We assume the existence of a triangulation T of 2,
defined as a set of non-overiapping triangles whose union is exactly P, and whose summits are taken in the set
{7, 7y}. Tite edges of the triangulation which are not edges of P are called inerior cdges. As mentoned
above, we may choose 0 allow the summits to Be anywhere on the boundary of P, provided that the weal
number of vertices in the triangulation does Dot exceed the number of vertices of P, up to within a constant
factor. In this case, we may, for simplicity, rename the vertices of P 30 that the fist ¥,....¥,, gives a clockwise
s description of all the vertices appearing on the boundary of the triangulation.
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e Observing that a triangulation forms the embedding of a planar graph, we choose a DCEL representation
of this graph as our basic working structure [MP78]. Recall that a DCEL is simply a handy data structure,
obainable in linear time from any standard adjacency representation, which in particular, allows one ©
4 traverse the boundary of each face in clockwise order and list the faces encountered on the left-hand side
during the traversal. Roughly, t0 each edge e of the graph is assigned a 6-field node containing the names of
the two endpoints in some specified order, as well as the two adjacent faces and the names of each of the
edges first encountered in traversing these faces in clockwise order, starting at the endpoints of ¢.
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Note that several algorithms are available in the literature for computing an arbitrary triangulation of an
N-gon. The best performance achieved so far is O(Nlog N) time [GJ78.CHS2], but is yet unknown to be
optimal or not.
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2. Visibility problems
A problem which arises frequently in graphics concerns the elimination of hidden lines from a two- or
; three-dimensional scene [NS79]. In two dimensions, the problem reduccs to computing the sets of points that
J are visible from a given point inside a polygon P. Linear algorithms for this problem already exist
"'j (CHS0.EAS1]. but they involve complicsted stack manipulations which become unnccessary, once a
triangulstion is made availablc. The problem can be formulated as follows: '

o & N
. i, X

Given a simple polygon P and a point M inside P, the locus of points V such that the segment MV
lies entirely in P is a simple polygon V(M). Compute a clockwise description of the boundary of
VM) (fig 5 '
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3 We can regard the triangics of 7 as forming the nodes of a graph G, whose cdges join the pairs of triangles
g with a common ecdge (i.e.. an intorior cdge) (fig.]). As shown in Lemma 1. the abscnce of interior faces
! ensurcs that the graph G is actually a tree.

2, polygon is mid (0 be simpée iT only adjacent cdges intersect
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[FIGURE])
Figwre 1: The triangulation T and the dual graph G.
Lemma 1! Gisatree

Proof: It suffices to show that for any pair of triangles /,,2, in the riangulation, there exists a
unique path between /, and 4, in G. The triangle ¢ pminons into 4 parts. One is the triangle 4
mmmmwmmzwmmon (note that some of these polygons may
be reduced to a single edge). Muymemﬂymofmmmpolymcominsmem;hlz.
CanUmmmmudemmedsadjmwtlandlbemeu-ungleofradjmmu
and lying in U (Ag.2). Since the triangulstion of P also provides a triangulation of U, and its
associsted graph G, is a subgraph of G, we can see that if there is a unique path in G ﬁ-omnotz.
m:ahoaunhuepﬁmGMlxwlz.MMnmpmednlemmby
the number of vertices. O

{FIGURE 2]
Figare 2: Proving that G is a tree.

Let e be any interior edge of the triangulation, and let A¢ be any point inside P. Letting 1 denote the triangle
of T which contains M, we can define G(M.¢) as the unique subtree of G emanating from ¢, which does not
contain ¢ (fig.3).

(FIGURE 3]
Figure 3: The subtree G(M,¢)

We are now in a position o give an slgorithm for computing the visibility polygon V(M). To facilitate our
task, we introduce the function VISIB, defined as follows: let ¢ be any segment lying entirely on the edge e.
Remove from T all the triangies which do not belong to G(M.e). and call Q the resulting polygon. We define
VISIB (M.c)) as the part of Q which is visible from M through the window ¢”. More precisely, VISIB (M.e)
is the set of points » in Q such that the only ineersection of Mx with the boundary of Q wkes place at ¢ (fig.4).
Let a.b.c be the verticos of the triangle in Q adjacent 10 ¢ with e=ab and ¢ =a'b". We define A (resp. 5) as
the intersoction of the polygonal line {ic.ca} with the infinise line passing through Ma” (resp. Mb'). It is now
straightforward 10 compuee the function VISIB recursively.
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VISIB (M.¢)

if ¢ lies on the boundary of P
thea -
return ({¢'})

Drstermine the points ¢, 4.8.
#f cliesbetween A and B
thea
V — VISIB (M.B¢c)
Ve VuVISIB(McA)
cles
Y — VISIB (M. AB)
return (V) - (fig4)

[FIGURE 4] |
Figure 4: Computing the area VISIB (M.¢’).
To compicte the computation of V(M), it suffices to detcrmine the triangle of T where M lies - which can
be done in O(N) time - then apply the previous procedure with respect to its three edges.

VISIBILITY (P.A)

Let ¢,.e,, be the edges in clockwise order of the
triangle of 7" which contains M. Initially V(M) = &.
fori =123

begin
V(M) — V(M) U VISIB (M.¢)
‘ .

Sec an illustration in fig.5. Note that, as described, the procedure reports the boundary of V(M) in
clockwise order, except for the ray-edges of V(M). i.c., the scgments collincar with M. which are omitted. A
single pass through the list V(M), however, will be sufficient to add the missing scgments, and we nced not
claborate. Using a DCEL representation of the triangulation cnsurces that cach recursive step can be exccuted
in constant time, from which we can conclude:

Theorem 2: Given a simplc N-gon P along with an arbitrary triangulation of P, it is possible to
compuic the visibility polygon from any point M insidc £, in O(N) time.

The main advantage of this algorithm is that it avoids the complicated stack manipulations of [CHH80} and
[EA81). The reader may convince himsclf/herselfZitsclf that the algorithm could be rewritten without greater
difficulty in order to deal directly with a more general convex decomposition (i.c.. without first converting it
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inw a triangulation). This may be an interesting alternative if one is willing t exploit the fact that scarching
among the edges of a convex polygon can be done in logarithmic time, using a Fibonacci search-based
stratcgy [CHE0,CD80}. We would not recommend this approach in practice, however, unicss the size of the
problem was particularly gigantic. Once again, we leave substantiating these digressions to the attention of
the reader.
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[FIGURES]
Figure §: The visibility polygon V(M)
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3. Applications to internal distance problems

3.1. The car-racing problem
What is the shortest trajectory of a racing car on a given circuit? More precisely, the problem which we
address in this section can be expressed as follows:

Given a simple polygon P and two arbitrary points A and B in P, find the shortest path inside P
between A and B (fig.6). .

[FIGURE6]
Figure 6: The internal path between A and B, IP(A,B).

This shortest path is called the internal path between A and B, denoted IP(A,5), and its length, [IP(4,B)}, is
called the internal disiance between 4 and B (fig.6). To have a visual representation of IP(4,5), one can
imagine a rubber band inside P tightly stretched between £ and B. In [SM77], Shamos suggests an O(M)
algorithm for computing [P(4,5). The method consists essentially of computing all pairs of vertices visible
from cach other, in O(V?) time, 30 as 10 form the so~called viewability graph of P. We next add weights to the

: graph by associating to each edge the Euclidean distance between its endpoints. Computing an intcrnal path
_j is now cquivalent to finding the shortest path between two vertices of a graph with N vertices, which can be
]

X done in O(?) time. Of course, we assume in this case that both 4 and B arc vertices of 2. We will next show

how the usc of a triangulation permits us 0 compute the internal path in O(A) time, without even having to
restrict the points to be on the boundary of P. Note that since we know how to compute a triangulation of an
N-gon in O(Mog N) time, this result constitutes a significant improvement.

For the time being. we will assume that both 4 and B arc vertices of 2. We will sce later on how we can
casily dispense with this requirement. If 4 and B arc vertices of the same triangle of T, it is clear that
IP(A.B)= AB. sv we may assumc that this is not the casc. [n the following, we will say that an intcrior cdge of
T is AB-crossing if its cndpoints «.v are such that A A.v appear this order around the boundary of P. Let P’
be the polygon resulting of the removal from 7 of all the cdges that are not AB-crossing (fig.7). We first prove
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a few technical lemmas,
[FIGURE 7}
Figure 7: The transformation of P into P°

Lu-d: The internal path between 4 and B in P is identical to the internal path between A
and Bin P’

Proof: It suffices to show that IP(A,B) can only intersect AB-crossing edges. To see that,
suppose that it intersects an interior edge e which is not AB-crossing. Since e partitions P into two
polygons.oncofdlem does not contain B, therefore 1P(A.B) crosses e at lcast twice (once in each
direction). If 4 (resp. B)stheﬂm(resp second) intersection, going from 4 to B, replacing the .
part of IP(A.8) from A" to B° by the segment 4°B" will shorten the length of IP(4. B), which leads
to a contradiction. O

Lemma 4: The internal path between A and B intersects every interior edge of P° exactly once,
and intersccts no otheredgein 7'

MmmofofLanma3dmm1P(AB)canmmtcmmymmmredaemm
once. On the other hand, we can easily prove by ind\nuonmameverymumredaeofr
partitions this polygon into two parts, neither of which contains both 4 and B, it must intersect
IP(A,B) at least once. Putting this result together with Lemma 3 complctes the proof. O

It is easy to compute 2" in O(N) time. To do so, consider every interior edge of T in turn, and if it is not
AB-crossing, remove it from T along with the dangling sub-polygon, just created, that does not contain 4 or
B. Let L = {ab,,.a 5.} be the interior cdges of P', as they appear from A 10 B (fig.7), ie. in the order in
which they interscct IP(A.5) (Lemma 4). Note that it is straightforward to obtain Z in O(N) time, once P" has
been computed. From now on, the term IP(x.y), with x.y., vertices of 2", refers to the internal path between x
and y with respect to either P or P'. This is legitimate since the two paths are identical, as a simple
generalization of Lemma 3 readily shows.

{FIGURE$]
Figure 8: Computing IP(A, B itcratively.)

Lemma S: For any i; 15ip. there exists a vertex v of P such that IX(A.a)= IX(4.) U U and
IP(4.5)= IP(A.v) U W, where U and W are two convex, non-intersecting polygonal lines urning
their convexuy against cach other. and running from vto a, and b, respectively (fig.8).

Proof: Let C, and C, be two oriented curves originating at the same point. To carry the analogy
with intcrnal paths. we | may further assume that neither is scif-intersecting: we say that C and C.
have a proper crossing if. as we follow C, from its starting point. we cncounter a point whae C2
intersccts €. and actually switches fmm one side w the other. Fig.9.1 (but not fig.9.2) shows an
example of‘a proper crossing.

[FIGUREY]
Figure 9: The notion of proper crossing.
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We next prove that for any three points A.8.C in P, the two paths 1N A.58) and IP(4,C) acver
have any proper crossings. Supposc that they did: lot a be the first point (starting at 4) where
IN(A.B) and I A.C) coase to coincide. and let 5 denete the next intersccting point. Since IF(4.5)
and IR A.Q) wke distinct paths from a to b we may re-route cither one to the other, since they
must have cxacdy the same length. [tersting on this process will eventually cause all proper
crossings to disappear, which proves the above fact. We can now establish Lemma § by induction
on i The initial case being trivial, we may directly assume that the lemma is true for all indices
from 1 w £ Since the 4,5, 's are triangulation-cdges. we necessarily have g, =a; b,sb“_l.uy.
d,*q.,,,_.wlog.'l‘hm.eomidennzmepamIP(A.qﬂ).weobmethnmel &oes
proper crossings with cither IP(4.a) or IP(4.5),

L. 1t must pass through their common point ».
Zlnverdnabaweenvandb“lmvemcelofvmd w.

From L. it results that we may concentrate on the path [(v,5, ;) instead of IP(4,5; ), since
obviously have IB(AD, 73 = IP(A) U TP . Nex: we &agihen proposiica’] oy proving

that the vertices of | )mvemowaWbutmofbothumemﬁmlM
mppouwmmmav.mevmoﬂﬂv mmthrl through ¢ lymonv
and ¢, on W. It follows that the angle (1.,

anobv:omsbolmnforll’( ). avoiding 7, (ﬁg.ﬂ)).whkhmwaemundmmm
mmmobmmmoons&er dependmgon whemerlﬂv.b,*l)uksmmml/orw
In the former case, » will be relocated further ahead on U, whercas it will stay unchanged in the
mmm«mwwmmmmauhmsmu

[ FIGURE 10)
Figure 10: Minimality properties of IP(vb,, .

We are now ready to proceed with the algorithm for computing IP(A4.8). The method invoives computing
IXA.a) and IX4,5), for i=1...p, which we can do iseratively by using the results of Lemena 5. The
procedure being trivial for i=1, we turn to the general step directly. As already mendioned, we have either
=4, or =5, . and we can assume wiog that g, =q, ). Let ¥,y (resp. wy..wy) be the vertices of U
(resp. W) from v o a, (resp. 8).

. The half-plane delfimited by a5, on the side where 5, , lics is partitioned into a -+ +1 regions, themseives
delimited by the lincs passing through
Wi M g Wy W VIV VU By el i

Wimmhm.mereﬁomappwsomdulonnm“muibiﬁun b, o a, so that we can find the
region which contains b, _ , by testing cach of them in wrn in this order, until we arc successful (fig.11). This
corrcsponds to unfolding W and possibly folding over U, If b, , lics in a pencil of the kind (% "% ™™
we must simply remove w, _;....wg from W and resct 8 10 k+1 and wg 10 b, (Aig1L1). 1F b, , tics in the
pencil (u_wuu; ). however, we must st W o ub, . remove (vuy....i ) from U and finally set v 0 &,

(fig.11.2). Al the other cascs arc similar and call for no further explanation.  Since none of the vertices
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IP{.4.B). will be computed in O(N) time.

[ FIGURE11)
Figure 11: Updating U and W.

We generalize this result by allowing both 4 and B to lie anywhere inside P, and not only on the boundary.
Let R (resp. S) be the trianglc where 4 (resp. B) lies. If R=S, the problem is solved since IP(4.58)= 48.
Otherwise. we can compute the chain of triangles P° in exactly the same way as described above.

Next, let v,y, be the interior edge of & which IP(4,5) crosses. We can replace R by the triangle vv.4 without
altering the path IP(4,8). Applying the same trestment t0 S will make 4 and B become vertices of P", which
allows us to call on the procedure described eatfier to compuse IP(4,5). In conclusion, we can state our main
result:

Thesrem 6 Let 7 be a simple N-gon, and assume that any triangulation of P is available. For
auy pair of points A.B in P, it is possible 10 compute 1P A.5), the inscrnal path between 4 and 38,
in O(N) time. which is optimal in the worst case.

3.2. The all-internal-psins problem _
The probiem is to preprocess the polygon 2 30 that 2 batch of queries of the kind:
What is the insernal path between A and B?

can be answered optimally. The method described in the previous section grants an atractive balance

between execution and preprocessing time, when only a few querics have to be handled at any given time. It

is worst-case optimal, but not optimal in the strictest sense of the term, since all the vertices of P must always

be examined for every query. As a resuit, the precomputation of all possible internal paths between vertices

cntails a prohibitive O(V) cost. The goal which we set forth here is to preprocess £ so that the computation of

IXA.B) for any pair of vertices (A.B) requires only time proportional to the size of the output, ie., the

number of vertices in IP(4,5). '

To achicve this goal, we use the concept of visibility introduced carfier. Let V(A) be the visibility polygon
of 4. If I A.BY= AB, B is a vertex of V(A), otherwise V(A) has a ray-cdge (i.c.. an cdge vw such that v lies on
Aw). with the property that »w scparates 4 from B by intersecting IP( A, 8). Morce preciscly, vw is the unique
cdge of V(A) such that cither A,v.8.w or A.w.B,v occur in clockwise order (fig.12). Since V(A) is star-shaped,
and vw is a ray-cdge which is traversed by IP(A,8), v must be the first veriex of 1 4.8) after A. Indecd, there
would be a shortcut if IP(A,58) cut vw at any other point. Consequently, we have the relation:

IMAB) = Avu IP(vB)

..................
.....................

.................

...................

* " .
---------
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D(4) = { F(Av): i=1..N}

in O(N) time, with O(N) storage. from which we conclude:

Theorem 7: Let P be a simple polygon with N vertices. It is possible 1o preprocess P in O(N?)
time, using oM space. so that for any pair of vertices 4.8, the path IP(4,B) can be computed
optimatly, i.c.. in time proportional to the size of the output.

Proof: Compute the VN arrays D(v)).-...D(V), forming an NxN matrix {F( "i'"j}' so that IP(4,58)
can be computed by retrieving F(4B8) in constant tme, ‘and computing
IXF(A4,5B),8) recursively. O

[FIGURE 12]
Figure 12: The all-internal-paths problem.

3.3. The internai-length problem

..................
..............................

...........................

--------------

This motivates the introduction of the function F(4.8)= 8. if IP(4,8)= AB, and F(4,B)=v otherwise.
Theorem 2 shows that if a triangulation of P is available, the visibility polygon V(4) of each vertex A of Pcan
be obtained in O(N) time. The knowledge of V(A£) permits us to set up the array

Imagine that an island with only inland communications is to be scrviced by some utility (water tank,
power station, fire house, police station, hospital, etc...). An interesting piece of information which may be
neededisanupperboundmtheintemalpimlenﬁhmeenanypairofpom

Let 4".B° be the two vertices of P which form the longest path IP(4".8"). We call |[IP(4°.8")| the internal
length of P. It is casy to determine A" and 8" by trying out all possible pairs of vertices and using the matrix F
of the previous section, given that the longest path can always be assumecd to be found between two vertices of
the poiygon. This leads to an O(N?) running time, which we can cut down to O(NV?) by proceeding as follows:

Let D(A.8) = [IP(A.B). We will compute D(A.B) itcratively by summing up partial distances obtained
from F. In order w0 avoid duplicating computations. as soon as IX A.B) is available, we backtrack along the
path just followed in F to rccord the partial results. This cnsures that, on average, onc value D( A, 8) will be
computed at every other step, which leads to an O(N?) algorithm.
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INTDIST

- Inidaily, each D(4,8) is set to -1 for A= B, and to 0 for 4= 5.

foralli (1<igN)
for all j (1<jsN)
begin

Q~—{v}

x.-'i

while D(x.vj) =-l
begin
x—F(x,

Q—Qu{x}
end

if Q has more than one element
then
Let Q = {x,,...x.
L«-D(Jtp.v1 ’} '
fork = p-1...1

L—L+ixx .
D(x,,v)e=L
o ¥ »
end
D(4".8") = Max ( D(v,) | all pairs of vertices v, )

Since we can compute a triangulation of 2 in O(Nog N) nme. we may conclude:

Theorem 8: It is possible to determine the internal length of a simple N-gon as well as the
corresponding internal path in O(Nz) time.

4. Conclusions
This paper has shown on the following cxamples how to use an arbitrary triangulation advantagcously:

1. Computing the visibility polygon at any point inside an N-gon in O(N) time.
2. Computing the intcrnal path between any pair of points in an N-gon in O(N) time.

3. Allowing O(Nz) preprocessing, being able to compute any internal path with optimal
performance.

4. Computing the intcrnal distance of an N-gon and the assiciated internal path in O( N?) time.
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All of these algorithms achieve significant improvements over previously known methods, since a
trianguladon of an N-gon can be computed in O(Mog N) time. The improvements are 10 be measured cither
in terms of beuer performance (Problems 2,3,4) or in terms of added simplicity (Problem 1). We should also
observe that it is yet unknown whether the triangulation algorithms available in the litcrature are optimal.
Since. on the other hand, haif of the algorithms which we have described in this paper are linear after
triangulation, overall speed-ups would automatically resuit from the discovery of faster triangulating
procedures.

This work was meant as a case-study and, of course, the list of possible improvements brought about by the
use of a riangulation is not closed. Further rescarch should attempt 0 enlarge the list given here, and carry
the same approach with other preprocessing structures, whether geometrical or not.
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